
ENVELOPE: A New Approach
to Estimating the

Delivered Performance
of High Performance Processors

by Daniel M. Pressel

ARL-TR-2671 February 2002

Approved for public release; distribution is unlimited.

20020318 109

The findings in this report are not to be construed as an
official Department of the Army position unless so
designated by other authorized documents.

Citation of manufacturer’s or trade names does not
constitute an official endorsement or approval of the use
thereof.

Destroy this report when it is no longer needed. Do not
return it to the originator.

Army Research Laboratory
Aberdeen Proving Ground, MD 21005-5067

ARL-TR-2671 Februarv 2002

ENVELOPE: A New Approach
to Estimating the
Delivered Performance
of High Performance Processors

Daniel M. Pressel
Computational and Information Sciences Directorate, ARL

Approved for public release; distribution is unlimited.

Abstract

Simulating a computer run can be an excellent method for identifying
performance bottlenecks and is especially valuable when discussing systems that
do not yet exist. Traditional simulations collect a program trace and then have a
simulator execute some subset of the trace one instruction at a time.
Unfortunately, all of the standard variants of this technique are far too slow to
use on jobs for high-end High Performance Computers and Supercomputers. We
have developed an approach based primarily on an analysis of the memory
access patterns and the number of floating point operations being executed that
will estimate the performance of any run in a small fixed amount of time (e.g., a
few seconds or less). Experience has shown that the results are nearly always
within a factor of 2 of the measured results and frequently are within 15% or
better of the measured results.

ii

Acknowledgments

The author wishes to thank Csaba Zoltani and Dixie Hisley of the ARL and
Punyam Satya-narayana of Raytheon for providing the necessary Perfex data.
He would also like to thank the many researchers who have published
performance results for the NAS and Linpack Benchmarks. Special thanks go to
Csaba Zoltani, Dixie Hisley, Punyam Satya-narayana, John Levesque, Marek
Behr, Steve Schraml, Allan Snavely, Sirpa Saarinen, and Shirley Moore for
providing performance data used in the testing of these tools. Additional thanks
are extended to Susan Sassaman of Business Plus Corp. (BPC) for editorial
services on this report.

Note: Definitions for boldface text can be found in the Glossary.

. . .
111

iv

Contents
.

Acknowledgments . . .
111

List of Tables vii

1. Introduction 1

2. Description of the Simulator 2

3. The Equations 5

3.1 Commonly Scalar Values .. 5

3.2 Scratch Arrays .. 6

3.3 Blocked Memory Access Patterns ... 6

3.4 STRIDE-N Memory Access Patterns.. ... 9

3.5 STRIDE-l Memory Access Patterns.. .. 12

4. Associated Tools 13

5. The Equations for the Associated Tools 14

5.1 Conventions Used in Subsections 5.2 and 5.3 . 14

5.2 Estimating the Numbers and Types of Floating Point Instructions
Using a Combination of u priori Data and Data From Perfex . 15

5.3 Estimating the Numbers and Types of Floating Point Instructions
Using a Combination of Data From HPM and Perfex*................................ 16

5.4 Conventions and Approximations Used in Subsections 5.5-5.8 17

5.5 Solving for the STRIDE-N Access Pattern Parameters . 19

5.6 Solving for the Blocked Access Pattern Parameters . 20

5.7 Checking for the Case of a Small Working Set Without a Large
Working Set . 21

5.8 Handling the Case Where No Working Sets Exist . 22

6. Future Work 23

7. Results and Conclusions 23

8. References 41

Glossary 43

Distribution List 45

Report Documentation Page 49

vi

List of Tables

Table 1. Input parameters for an IBM SF’ with 375 MHz for the Linpack
Power 3 Thin SMP nodes 100 x 100 benchmark. 24

Table 2. Input parameters for an IBM SF’ with 375-MHz Power 3 Thin SMP
nodes for the CG NAS benchmark (class B using MPI) with prefetching
“disabled.” . 27

Table 3. A comparison of predicted results from ENVELOPE to measured
results . 30

Table 4. A sample run of the program that uses Perfex data to suggest the
input parameters for use with the program ENVELOPE . 38

vii

INTENTIONALLYLEFT-BLANK

. . .
VII1

1. Introduction

Simulating a computer run can be an excellent method for identifying
performance bottlenecks. This can be especially valuable when discussing
systems that do not yet exist. As such, it can augment benchmarking efforts by
helping to explain, or even predict, results as opposed to simply reporting them.
Unfortunately, traditional techniques in this field have suffered from three
constraints:

(1) Describing a modern processor architecture with sufficient fidelity to
ascertain the validity of the results is difficult.

(2) ‘The simulations are so expensive to run that many jobs were simply
considered to be prohibitively expensive to simulate. This can be an
especially serious problem in the areas of high-end High Performance
Computers and Supercomputers.

(3) Even when it was practical to run a simulation, it was frequently
impractical to run it multiple times to quantify the benefits of various
approaches to code tuning.

An example of this can be found in a recent posting to the comp.arch news group
by a quote from Christopher Brian Colohan, a graduate student at Carnegie
Mellon University:

I am currently working on a project which involves detailed
processor simulation of the SPECInt2000 benchmarks. We are
encountering the usual problem with simulations: they are taking
too long, even when we use the provided “test” input. (The test
input for bzip2 takes 41 seconds to run on our SGI Origin machine
-- simulating more than a second or so of real CPU time on our
simulator gets kind of painful. . .>.

In response to this posting, John Mashey of SGI responded:

I think people have tried to achieve this effect by taking slices of
SPEC and other benchmarks in order to get, for example,
reference streams to analyze alternate designs for memory
hierarchies (i.e., this is different from changing the input). For
example, for some codes, the performance on a few iterations
would model the entire computation but, of course, this doesn’t
work for others [l].

Note: Definitions for boldface text can be found in the Glossary.

In a similar vein, Naraig Manjikian [2] has stated that when using the
SimpleScalar tool set on a 333-MHz Sun Ultra/l0 workstation, the simulation
rate was approximately 300,000 instructions/second (compared to a peak rate of
over 1 billion instructions/second when executing code directly on the
hardware).

Considering the BT, CG, LU, and SP NAS (class B) benchmarks the floating point
operations count range from 54 to 686 billion floating point operations for a
single run. On a 300-MHz R12000-based Origin 2000 using a single processor,
this translates into measured run times of 1,250-9,700 seconds. Clearly, if
simulating a 41-second run is a problem, these industry standard benchmarks for
high performance computing must be all but out of reach.

In response to this problem, we have developed an entirely different approach to
simulating these runs. This approach is based on the time tested concept of
“Back-of-the-Envelope” calculations. With this in mind, we have named our
program “ENVELOPE.” Rather than trying to simulate every aspect of the
microarchitecture, this approach assumes that the computer architects know how
to design a processor. In particular, if they claim that the peak floating point
speed is 1 GFLOPS, then we take them at their word and use that number in the
simulation. This also applies to various numbers involving memory, cache, and
TLB latency and bandwidth. When combined with other system parameters and
information about the code to be run on the system, an estimated performance is
produced in a small fixed amount of time (e.g., 1 second). This run time is short
enough to allow one to easily investigate the effects of turning various hardware
features (e.g., prefetching) on or off and/or investigate various ways in which
the code might be tuned.

2. Description of the Simulator

The current version of ENVELOPE prompts the user for input (this can come
from a redirected file), writes its output to standard output, and also writes an
annotated copy of the input to the file ENVELOPE.INPUTS. This later file can
easily be edited and used as input in a future run (the annotations will be
ignored by ENVELOPE). The output is broken into two categories-prompts for
input and results. Every line that is considered to be a result begins with a pound
sign (#> so that it can easily be searched when using GREP. Under the direction
of Shirley Moore of the University of Tennessee at Knoxville, work is under way
to produce a friendlier user interface using Java.

The first 18 lines of input describe the hardware in terms of peak characteristics
(e.g., peak bandwidth between the outermost level of cache and the processor, in
million bytes per second), minimum characteristics (e.g., memory latency in

nanoseconds), fundamental values (e.g., cache line size in bytes), and
miscellaneous descriptions regarding the friendliness of the processor’s design
(e.g., describing the pipeline depth as short, moderate, deep, or very deep). This
last set of values is used to estimate how much the peak speed of the processor
should be discounted. The goal here is to somewhat level the playing field
between designs that are blazingly fast but terribly unfriendly to program and
those that made tradeoffs between peak speed and usability by keeping the
number of operations in flight low and/or supporting features such as Out-of-
Order execution and/or register renaming. In most cases, this heuristic makes
little difference in the final result, since the performance of the memory system is
frequently the limiting factor.

The remaining questions ask the user to describe the software and its memory
access patterns. In theory, this information can be derived through inspection of
the user’s program. In practice, only the simplest of programs can be analyzed in
this manner with sufficient precision. As an aid to this process, a tool has been
developed, which will be described in more detail in sections 4 and 5. The main
characteristic here is that the variable usage can be broken down into the
following categories:

(1) Variables that spend a significant amount of time mapped to a register and
therefore have a negligible number of loads or stores associated with them.

(2) Scratch arrays that have potentially been sized to fit in one of the levels of
cache. An estimate of the size of the working set is supplied by the user.
This can also be used to estimate the parameters for any working set that
might exist. The assumption here is that there is a negligible cache miss rate
associated with this working set, but that the flow of data between the
cache and the processor still needs to be modeled.

(3) Blocked arrays or alternatively a second, presumably larger, working set. If
this is used to model a blocked access pattern and if the working set is too
large to fit into cache, a STRIDE-N access pattern is assumed. However, if
the option of treating this as just another working set is used and if it fails
to fit into cache, a STRIDE-l access pattern is assumed. This flexibility
allows us to model the behavior of a wide range of programs that benefit
from the presence of a large cache and is particularly useful for programs
with two or more distinct sizes of working sets.

(4) Arrays accessed with a STRIDE-N access pattern. In most cases, this access
pattern will result in a high TLB miss rate. Almost all programs that we
have looked at have at least some data that is accessed in this way;
although for well tuned codes, less than 0.1% of all loads/stores will fall
into this category. The LU NAS benchmark is an interesting exception to
this rule. It can have 0.45-0.57% of all loads/stores falling into this category
(depending on the version of the code being used). Fortunately, on many

3

systems, the resulting TLB misses seem to hit in cache, resulting in an
acceptable level of performance. Unfortunately, it can be difficult to predict
such behavior without a priori knowledge and/or experimental results to
compare to. However, when such results are available, the hardware
parameter for the TLB latency can be adjusted to a more appropriate value
(e.g., subtract off the cost of a cache miss from the normally used cost of a
TLB miss).

(5) Arrays accessed with a STRIDE-l access pattern.

For categories 3-5, the amount of data reuse (cache and register levels combined)
can be specified. This allows accurate modeling of programs that might not have
a working set, or alternatively, the working set might be orders of magnitude
larger than the cache. Even so, the program need not be restricted to using each
data item in a cache line just once per cache miss. However, for some usage
patterns, a usage factor in the range of 1 to 2 is exactly what will be seen. The
ability to specify the amount of data reuse supports the widest possible range of
programs without requiring hard coding in any assumptions.

ENVELOPE has been extensively tested with several numerically intensive
programs using a variety of RISC and CISC processors. It is also designed to
handle codes with few, if any, floating point operations. Furthermore, it should
be able to model other types of architectures (e.g., vector processors), although
no attempt has been made to date to exercise either of these capabilities.

Table 1 shows an example of an input file describing the Linpack 100 x 100
benchmark running on ‘an IBM SP with 375-MHz Power 3 Thin nodes. The
parameters in this file were derived using a detailed analysis of the source code,
as well as taking into account common compiler optimizations.

Table 2 shows an example of an input file describing the NAS CG class B
benchmark (MPI). Since this benchmark uses an unstructured grid, which
inhibits prefetching, prefetching has been disabled. Again, the system being
modeled is an IBM SP with 375-MHz Power 3 Thin nodes.

The predicted level of performance for the Linpack 100 on the IBM SP (as
previously described) is 359 MFLOPS, while the measured level of performance
is 426 MFLOPS. The predicted performance is within 19% of the measured
performance. If one assumes that the benchmark was run on a dedicated node,
then the processor could have used a larger percentage of the memory
bandwidth. This allows the predicted performance to increase to between 481
and 559 MFLOPS (depending on the precise limitations of the processors
memory interface), or within ll-31% of the measured performance 131.

For the CG benchmark, the predicted level of performance is 53 MFLOPS. The
measured level of performance is 46 MFLOPS, or within 15% of the predicted
level of performance [4]. Table 3 contains additional results.

3. The Equations

This section will discuss some of the equations used by ENVELOPE in estimating
the performance of a program. The complete set of equations is quite lengthy and
is beyond the scope of this paper. However, this discussion should be adequate
in giving one a feel for how this program works.

3.1 Commonly Scalar Values

The time spent loading and storing commonly used values into the registers is
computed using the following equations. It is important to note that it is
assumed that these values can be found in one or more levels of cache and these
operations will not result in any TLB misses. There is also an implied assumption
that a processor cannot do more than one memory operation per opportunity to
launch a multiply-add instruction. A few processors can, in fact, do better than
that under certain circumstances. For most RISC and CISC processors, this is not
a concern. However, it might be an important consideration if this code were to
be used to model the performance of a Cray C90.

Runtime = Runtime +
P#SV@ * #S

UR#SV@ * UL2BANDWBYI’H ’
(1)

where # can either be L for LOAD or S for STORE and @ can either be
DEDICATED* or GENERAL.+

P#SV@ refers to the percentage of the total amount of data that is either being
loaded or stored (depending on what # is) of the specified class of values (as
specified by @). #S is the total amount of data that is either loaded or stored.
Therefore, the.numerator refers to the amount of data being loaded or stored for
this class of data. UR#SV@ refers to the amount of reuse at the register level for
the data in question. The higher the level of reuse, the fewer the loads and stores
that will actually be executed. In other words, for programs like Linpack, the
code might indicate that a value will be loaded for each and every multiply-add
instruction. However, a smart compiler might actually perform the load just
once. In that case, the value for UR#SV@ would be large enough to make this
part of the calculation irrelevant. Finally, ULlLBANDWIDTH is the bandwidth

* The term DEDICATED implies that the values will only be used in calculations involving
other commonly used values. A prime example of this is Horneis algorithm for evaluating
polynomial equations.

t The term GENERAL implies that while the value will be “locked” into a register, it will be
used in conjunction with other classes of variables. Therefore, the cost of the floating point or
integer calculations that this value is involved with will be charged to the other classes of variables.
An example of this type of variable might be PI.

5

between the processor and the outermost level of cache (frequently, the L2
cache).

For the DEDICATED variables, it is also necessary to calculate the time spent
performing calculations involving these variables. This calculation is fairly
straightforward. The only complicating factor is that since some, if not all, of
these calculations can be paired up with load and store instructions on today’s
superscalar processors, one must avoid counting these cycles twice. This can be
done by subtracting the time spent on the loads and stores for DEDICATED
variables from the time spent computing with them. Since it is possible that the
loads and stores will take longer, one needs to take the maximum of the
difference and zero to avoid overcompensation.

3.2 Scratch Arrays

The next order of business is to account for the time spent dealing with small
scratch arrays that will normally be “locked” into one or more level of cache.
This is not assumed to be the case, but will generally be the case. Using the same
notation and terminology as in subsection 3.1, the equations will be:

Runtime = Runtime +
P#SA@ * #S

UR#SA@ * UL2BANDWIDTH ’
(2)

Again, one must also take into account the time spent performing caluclations
that only involve the scratch array and the commonly used values discussed in
section 3.1.

A complicating factor is that one must also take into account the cache misses
associated with these scratch arrays. ENVELOPE assumes that the number of
TLB misses associated with the scratch arrays will be negligible. If the working
set for the scratch arrays is larger than the size of the outermost level of cache,
then ENVELOPE will assume a STRIDE-l access pattern. Otherwise, ENVELOPE
assumes that there is a sufficient level of data reuse at the cache level that the cost
of batching up the cache can be ignored. Since this will normally be the case, we
will not discuss the equations used any other time.

3.3 Blocked Memory Access Patterns

This portion of the code can either be used to estimate the cost of a code segment
with a blocked memory access pattern or to estimate the cost of code segment
involving scratch arrays with a larger working set. In the latter case, the
estimated size of the working set should be negated and specified as the block

6

size.* The details associated with the handling of the case where the block size
(or second working set size) is larger than the size of the cache will not be
discussed. However, they are similar to the cases discussed in subsections 3.4
and 3.5.

With everything fitting into cache, one still has to be concerned with the cache
misses associated with batching up the cache. Furthermore, unlike subsection 3.2,
ENVELOPE does not assume that this cost can be ignored. In the case of a
blocked access pattern, the level of reuse might be fairly modest (e.g., 2-10). Even
in the case of a second level of working set, the level of reuse might be more
limited. This part of the program is split into the following two cases:

(1) In the case where prefetching has been essentially disabled by setting the
maximum number of outstanding prefetches/cache misses to 1, the latency
of a cache miss will effectively determine the usable memory bandwidth.

(2) In the other case, the memory bandwidth will be the limiting factor.+*

The first step is to determine the number of cache misses. This number is not
actually used for the calculation of runtime and performance. It is however used
to estimate the number of bus transactions. Calculating the time required to
perform the cache misses is much more complicated. Some of the complicating
factors are as follows:

* The negative value is used as a flag when the working set is larger than the cache. If the block
size is positive, then ENVELOPE will estimate the cost of the loads and stores as though this code
segment was using a STRIDE-N access pattern (the most expensive access pattern). However, if
the block size is negative, then EWELOPE estimates the cost of the loads and stores as though this
code segment was using a STRIDE-l access pattern. While this access pattern is more expensive
than living out of cache, it is significantly less expensive than a STRIDE-N access pattern.

t Earlier in the program, the memory bandwidth was adjusted, when necessary, to handle the
situation in which the supported level of prefetching was insufficient to fully utilize the complete
memory bandwidth.

$ ENVELOPE actually supports three separate values for the memory bandwidth:
(1) The bandwidth when only performing loads.
(2) The bandwidth when only performing stores.
(3) The bandwidth when performing a balanced mix of loads and stores.

For some systems, the three values will be the same. However, for the HP PA 8XXX series of
processors, on a well balanced system, the third value will actually be the sum of the first two
values. As a result of this, it is necessary to determine the amount of data being loaded and stored,
pair the loads and stores at the mixed bandwidth rate, and then finish up with any nonpaired loads
or stores. This assumes that the code pairs loads and stores as much as possible. This is not always
the case, but is a good assumption for codes that call the BLAS routines, copy arrays, transpose
arrays, and perform a variety of other common operations. However, for a program which copies
data into a small buffer that is “locked” into cache, pounds on the buffer, and then writes the
results out to a large global array, this can be a poor assumption. Fortunately, for many systems,
this discussion is academic, since the three values are identical. In the remaining situations, it
appears as though the maximum error is an overestimation of the performance (under estimation
of the run time) by a factor of 2.

(1) Addition a memory traffic resulting from the coherency protocols for cache 1
lines that are stored to.

(2) The allocation of memory bandwidth to handle the portion of the loads and
stores that can be overlapped with each other.

(3) Calculating the time required for those loads or stores that could not be
overlapped with stores or loads respectively.

(4) The grouping of data into data structures. In particular, the inefficiencies
that can result if most accesses to the structure use less than 100% of the
data (this will result in the consumption of additional memory bandwidth).

(5) The level of t emporal locality (the number of times a value is reused prior
to eviction from the cache).

Additionally, the number and cost of the TLB misses must be accounted for.
Fortunately, this process is somewhat simpler than it was for cache misses, since
ENVELOPE assumes that TLB misses are handled one at a time by the processor
and cannot be overlapped with anything. In the case where the cost of the stores
is expected to be greater than the cost of the loads and prefetching is supported,
the equations are as follows:

GSIZE
current cache misses =

PLGB * LOADS *
UCLGB * L2LSIZE GDENSITY ’

curTent run time =
PLGB * LOADS * RMTRANSACTIONS

’

(3)

(4)
UCLGB * PUMRBANDWIDTH

current TLB misses =

PLGB * LOADS PSGB * STORES GSIZE
* PAGESIZE + UCSGB

*
UCLGB * PAGESIZE GDENSITY *

TEMPBUSTRANSACTIONS = current cache misses *
RMTRANSACTIONS + current TLB misses.

(5)

(6)

TEMPRUNTIME = current run time *
GSIZE +,

GDENSITY (7)

current TLB misses * TLATENCY * 10 -9 .

current cache misses =
PSGB * STORES GSIZE *

UCSGB * L2LSIZE GDENSITY’

current bus transactions = current cache misses * WMTRANSACTIONS.

03)

(9)

current run time =
PSGB * STORES * WMTRANSACT IONS

- current run time * PUMWBANDWI DTH
UCSGB

(10)
UMWBANDWIDTH

TEMPRUNTIME = TEMPRUNTIME + current run time * G,fNyRy. (11)

total run time = total run time + TEMPRUNTIME. (12)

TEMPBUSTRANSACTIONS =
(13)

TBMPBUSTRANSACTIONS + current bus transactions.
total bus transactions = (14)

total bus transactions + TEMPBUSTRANSACTIONS.

Other cases which are handled separately but in a similar manner are:

(1) Working set fits into cache, with loads taking longer than Stores, with
prefetching supported.

(2) Working set does not fit into cache, and default back to a STRIDE-N access
pattern has been specified.

(3) Working set does not fit into cache, and default back to a STRIDE-l access
pattern has been specified. In this case, all of the possible ways for
computing a STRIDE-l access pattern for a data set not fitting into cache
must be handled (see subsection 3.5 for details).

(4) Working set fits into cache, but prefetching is not supported. This precludes
the possibility that cache misses resulting from loads and stores can be
overlapped, since cache misses resulting from loads cannot even overlap
with themselves.’

3.4 STRIDE-N Memory Access Patterns

In theory, this should be the easiest of the memory access patterns to handle. In
reality, some additional complications have arisen that are causing some
problems. These complications will be discussed in greater detail as this section
progresses. Unlike subsection 3.3, there are only two cases that need to be
considered here:

(1) All of the data fits into cache. In this case, ENVELOPE assigns the cost of
batching up the cache to this access pattern. The cost is calculated in a very
simple manner designed to produce the smallest possible cost (e.g., the
minimum number of cache misses and assuming that prefetching is
supported).+ Additionally, if any calculations are specified for this access
pattern, their cost will also be calculated.

* In some cases, this might be too pessimistic, since some systems might support the
overlapping of coherency traffic (e.g., write backs from cache to main memory as part of an
eviction) with the handling of a cache miss. It is not clear what the exact importance of this form of
overlapping would be; therefore, it is currently treated as a higher order effect and is ignored.

t In some cases, this may be overly optimistic; however, it is unlikely that any jobs other than
some of the smaller benchmarks (e.g., Linpack 100 x 100) will ever fall into this case.

(2) By far, the more common case and, therefore, the one that will be
considered in greater detail is the case where the amount of data is too
large to fit into the cache (probably by a large amount).

In this section, the following simplifying assumptions are made when handling
the second case:

(1) TLB misses do not overlap with anything.
(2) TLB misses have a fixed cost, with the page table entry coming from main

memory.
(3) Effectively, no form of overlapping multiple cache misses can occur, since

each of the cache misses will be associated with a TLB miss.

(4) The grouping of data into structures can reduce the number of TLB misses.’
(5) Each TLB m’ rss is expected to have a cache miss associated with it. In

reality, it is possible for an algorithm (e.g., LU decomposition) to loop
through a few hundred pages of data with a STRIDE-N access pattern. In
such a case, there can be significantly more TLB misses than cache misses.
However, for an algorithm with a random access pattern and/or a working
set involving tens of thousands (or more) of pages of data, each TLB miss
should have a corresponding cache miss.+

Of all of these assumptions, the second assumption seems to be causing the most
problems. If the TLB misses occur in a cyclic fashion, it is conceivable that a
processor might store the page table entries in cache. On many systems, this
would decrease the cost of a TLB miss by at least a factor of 2. Calculations based
on benchmarking studies made for the NAS LU Benchmark (class B) indicate that
on many systems, this is almost certainly happening. At the present time, the
best solution to dealing with such a case is to significantly decrease the estimated
cost for TLB misses when modeling such a run. It should be noted that to avoid
problems with ENVELOPE’s error checking and default mechanisms, the cost of
a TLB miss should be at least 1 nanosecond.

* For codes that were analyzed by hand, this can be an important effect. However, since the
author expects that most codes will be analyzed using the tool discussed in section 4, this effect is
insignificant. The tool discussed in section 4 recommends input to ENVELOPE based on the
output from a Perfex run. In that case, any benefit from the grouping of data into structures has
already been accounted for by a corresponding reduction in the measured TLB miss rate. Such a
reduction would be expressed as a decrease in the estimated percentage of the work that is mapped
to the STRIDE-N access pattern.

t This is not as serious a problem as one might expect. If one assumes that most programs will
be analyzed by the tool in section 4, then since that tool makes the same assumption, everything
should work out. There might be some minor discrepancies due to the cache misses being handled
one at a time; whereas, if they were mapped to a STRIDE-l access pattern they could be overlapped
using prefetching. However, for a well-tuned code, one can expect the number of TLB misses to be
significantly smaller than the number of cache misses. In this situation, all of this becomes a higher
order effect that can be safely ignored.

10

The resulting equations are as follows:

current cache misses =
PLGN * LOADS

UCLGN * DSIZE * GDENSITY’

current TLB misses = current cache misses.

current cache misses = current cache misses * 1 + GSIZE * DSIZE

1 L2LSIZE ’

current bus transactions = current cache misses *

RMTRANSACTIONS + current TLB misses.

L

current cache misses * MLATENCY *

current run time = RMTIWNSACTIONS +

I

-9 *lO .

current TLB misses * TLATENCY

TEMPRUNTIME = current run time.

TEMPBUSTRANSACTIONS = current bus transactions.

current cache misses =
PSGN * STORES

UCSGN * DSIZE * GDENSITY’

current TLB misses = current cache misses.

current cache misses = current cache misses * 1 + GSIZE * DSIZE 1 L2LSIZE ’

current bus transactions = current cache misses *

WMTRANSACTIONS + current TLB misses.

current cachemisses * MLATENCY *

current run time = WMTRANSACTIONS +

L

* 10-g.

current TLB misses * TLATENCY ,I

TEMPRUNTIME = TEMPRUNTIME + current run time.

total run time = total run time + TEMPRUNTIME.

TEMPBUSTRANSACTIONS =

TEMPBUSTRANSACTIONS + current bus transactions.
total bus transactions = total bus transactions +

TEMPBUSTRANSACTIONS.
TEMPRUNTIME =
2.0 * PGNMADDS * NMADDS+ PGMULTIPLIES * NMULTIPLIES

-- _.---
UMAUDS UMULTIPLIES

(15)

(16)

(17)

(19)
(20)

(21)

(22)

(23)

(24)

(25)

(26)

(27)

(28)

(2%

(30)

11

TEMPRUNTIME = TEMPRUNTIME +
PGNADDS * NADDS+

UADDS
(31)

PGNIOPS * NIOPS

UIOPS *
TEMPRUNTIME =

TEMPRUNTIME,
PLGN * LOADS+ PSGN * STORES (32)

UL2BANDWIDTH

total run time = total run time + TEMPRUNTIME. (33)

3.5 STRIDE-l Memory Access Patterns

Once again, the STRIDE-l Memory Access pattern requires the handline of the
following special cases:

(1) The data set being small enough to fit entirely in cache. Again, this case is
primarily there to support some small benchmarks (e.g., Linpack 100 x
100). As seen in subsection 3.4, the cost of the cache and TLB misses have
already been accounted for. Therefore, all that remains is the
straightforward handling of the cost of the instructions themselves. This is
done in a manner that is very similar to the last four equations in
subsection 3.4.

(2) A STRIDE-l access pattern with prefetching disabled. This implies that the
cache misses do not overlap. Therefore, whether the loads or stores take
longer to complete is not a concern.

(3) The cases of a STRIDE-l access pattern with prefetching enabled. The
relative costs of the loads and stores is now a concern. While these two
cases must be handled separately, the resulting equations both look very
similar to those used in subsection 3.3. Therefore, they will not be repeated
here.

What will be looked at here is the second case. The resulting equations are as
follows:

current cache misses = PLGl * LOADS GSIZE
UCLGI * L2LSIZE * GDENSITY ’

(34)

current TLB misses =

(

PLGI * LOADS GSIZE (35)
UCLGl * PAGESIZE + GDENSITY

current bus transactions = current cache misses *
(36)

RMTRANSACTIONS + current TLB misses.

12

i

current cache misses * MLATENCY *
current run time = RMTRANSACTIONS + current TLB misses * 10-g.

* TLATENCY I

TEMPRUNTIME = current run time.

TEMPBUSTRANSACTIONS = current bus transactions.

PSGl * STORES current cache misses = UCSGl
* L2LSIZE *

GSIZE
GDENSITY ’

PSGl * STORES current TLB misses = UCSGl * PAGESIZE * GSIZE
GDENSITY *

current bus transactions = current cache misses *
WMTRANSACTIONS + current TLB misses.

current cache misses * MLATENCY *
current run time =

r

WMTRANSACTIONS +

1

* 10 -9 .
current TLB misses * TLATENCY

TEMPRUNTIME = TEMPRUNTIME + current run time.

total run time = total run time + TEMPRUNTIME.

TEMPBUSTRANSACTIONS =
TEMPBUSTRANSACTIONS + current bus transactions.

total bus transactions = total bus transactions +
TEMPBUSTRANSACTIONS.

TBMPRUNTIME =
2.0 * PGlMADDS * NMADDS+ PGlMULTIPLIBS * NMULTIPLIES

UMADDS UMULTIPLIBS

TEMPRUNTIME = TEMPRUNTIME +
PGlADDS * NADDS

+
UADDS

PGlIOPS * NIOPS

UIOPS .

TEMPRUNTIME =

PLGl * LOADS+ PSGl * STORES
UL2BANDWIDTH

total run time = total run time + TEMPRUNTIME.

(37)

(38)
(39)

(40)

(41)

(42)

(43)

(4.4)
(45)

(46)

(47)

(48)

(49)

(50)

(51)

4. Associated Tools

Unfortunately, most people will find it difficult, if not impossible, to analyze the
usage patterns of most programs with sufficient detail for use with ENVELOPE.
In an attempt to solve this problem, we have written a second program which

13

prompts for information from an instrumented run (e.g., Perfex on an SGI system
and or the Hardware Performance Monitor on Cray vector systems). Based on a
modest number of questions, it will solve a series of equations and supply a set
of numbers for use with ENVELOPE. Unlike ENVELOPE, some assumptions and
heuristics are used in this tool. As a result, the results may not be unique and
probably will not exactly match what would be produced by a detailed analysis
of the user’s program. However, the results should be sufficient to allow
ENVELOPE to accurately predict many aspects of the performance of the user’s
program (e.g., run time and performance in terms of MFLOPS). Table 4 shows a
sample run of this program.

5. The Equations for the Associated Tools

This section will discuss some of the equations used by the tool which uses data
from Perfex (or similar programs/libraries, e.g., PAPI) to simplify the job of
creating an input file for ENVELOPE. This tool contains two parts. The first part
is optional, and when used, will use one of two approaches (depending on the
available input data) to estimate the number of floating point adds, multiplies,
and multiply-add instructions that are executed during a run. It should be noted
that each of these instructions actually represents a group of instructions (e.g.,
“adds” includes adds, subtracts, compares, as well as other less frequently used
instructions such as convert, int, abs, etc.). Subsections 5.1-5.3 will discuss this
part of the tool in greater detail.*

The second part of the tool calculates (or, in a few cases, provides crude estimates
based on rules of thumb) most of the remaining inputs needed to describe the
software to ENVELOPE. This part of the tool will be discussed in subsections
5.4-5.8.

5.1 Conventions Used in Subsections 5.2 and 5.3

The following conventions will be used in subsections 5.2 and 5.3 to simplify the
equations.

* One important point to remember is that some compilers will only produce independent
multiply and add instructions, other compilers will preferentially produce multiply-add
instructions, and a few will produce a mix based on some optimization criteria. Furthermore, for
some hardware, this will make little if any difference in the performance. However, for other
systems, there might be a significant difference in performance (e.g., up to a factor of 2). Therefore,
in cases where the tool estimates that a large number of independent multiply and add instructions
are being used, one might want to calculate the performance based on both that set of numbers and
on the assumption that the hardware is executing the instructions as though they were chained
multiply-add instructions. Fortunately, in most cases, factors such as the amount of time spent on
cache misses and the ratio between memory operations (loads and stores) vs. floating point
operations may eliminate most of the potential difference in performance.

14

NADDS = number of floating point add instructions.

NFINST = number of floating point instructions.

NFLOPS = number of floating point operations.

NMADDS = number of floating point multiply-add instructions.

NMULTIPLIES = number of floating point multiply instructions.

NRECIPROCALS = number of reciprocal approximation instructions.

“> ” = greater than.

“2” = greater than or equal to.

‘IcN = less than.

r’lN = less than or equal to.

5.2 Estimating the Numbers and Types of Floating Point Instructions
Using a Combination of u priori Data and Data From Perfex

If one has access to a count of the number of floating point operations for a run,
as is frequently the case for industry standard benchmarks, then one can use that
information in conjunction with the floating point instruction count from Perfex
to estimate the number of times each of the three classes of instructions (adds,
multiplies, multiply-adds) is executed during a run. Alternatively, by comparing
the floating point instruction count from two runs (one compiled with the use of
multiply-adds enabled and one compiled with their use disabled), one can also
use the following equations:

If NFINST ;I NFLOPS, then

NMADDS = 0.0,

NADDS= 0.5 * NFLORS,

and

NMULTIPLIES = NADDS.

Otherwise, if FLINST 2 0.5 * NFLORS, then

NMADDS = 0.5 * NFLOI’S,

NADDS = 0.0,

and

Otherwise,

NMULTIPLIES = 0.0.

and

NMADDS = NFLORS - NFINST,

NADDS = NFINST - NMADDS,

(52)

(53)

15

NMULTIPLIES = O.O.* (54)

It is important to note that the equations being used have been made more robust
by eliminating the assumption that the compiler produced a floating point
operation count that was identical to that produced by a priori knowledge. In
some cases, an optimizing compiler might do slightly better. In other cases, an
optimizing compiler might even add floating point operations if it thought that
the efficient use of multiply-add instructions would improve the overall
performance of the code. By not relying on this assumption, one can be certain
that none of the operation counts will ever be negative or exceed the specified
number of floating point operations.

5.3 Estimating the Numbers and Types of Floating Point Instructions
Using a Combination of Data From HPM and Perfex

If one has access to both the output from the hardware performance monitor on a
Cray Research vector processor (e.g., C90) and the floating point instruction
count from Perfex, one can estimate the number of times each of the three classes
of instructions (adds, multiplies, multiply-adds) is executed during a run. In this
case, the reciprocal approximation instruction from the Cray vector processor
will be lumped in with the multiply instructions. The rationale for this is to treat
the combination of the reciprocal approximation with the additional refinement
step as a divide instruction. ENVELOPE suggests that divides be included with
the multiply instructions with an appropriate weighting factor. Effectively, this is
what we are doing in the following equations:

If NADDS + NMULTIPLIES + NRECIPROCALS 2 NFINST, then

and

NMULTIPLIES = NMULTIPLIES + NRECIPROCALS,

NMADDS = 0.0, (55)

NADDS remains unchanged.

Otherwise, if NADDS + NMULTIPLIES + NRECIPROCALS 2 0.5 * NFINST,
then

NMADDS = minimum of (NADDS or NMULTIPLIES),

NADDS = NADDS - NMADDS,

* For most of today’s processors, the cost of a floating point add is the same as the cost of a
floating point multiply. Therefore, assigning all of the excess floating point instructions to the
floating point adds will not effect the results produced by ENVELOPE. However, on some older
processors such as the MIPS R4000/R4400 and the KSRI, this assumption is no longer valid. On
these machines, there may be a difference in the estimated performance, and one might want to
determine what the bounds on this performance are by running ENVELOPE twice---once with all
of the excess instructions classified as floating point adds and the second time with all of the excess
instructions classified as floating point multiplies.

16

and

NMULTIPLIES = NMULTIPLIES + NRECIPROCALS - NMADDS. (56)

Otherwise, if NADDS < MULTIPLIES, then

NMADDS = minimum of (NRECIPROCALS + NADDS + NMULTIPLIES -

NFINST or NADDS),

NADDS = NADDS - NMADDS,

and

NMULTIPLIES = NMULTIPLIES + NRECIPROCALS - NMADDS. (57)

Otherwise,

NMADDS = minimum of (NRECIPROCALS + NADDS + NMULTIPLIES -

NFINST or NMULTIPLIES),

NADDS = NADDS - NMADDS,

and

NMULTIPLIES = NMULTIPLIES + NRECIPROCALS - NMADDS. (58)

Again, one can see that we were careful to handle the situations where the
numbers do not add up. However, to the extent that numbers do add up, we
make the assumption that programs take advantage of chained multiplies and
adds on the Cray vector processors. Therefore, these chained operations should
be translated into multiply-add instructions for the purposes of running
ENVELOPE.

5.4 Conventions and Approximations Used in Subsections 5.5-5.8

In subsections 5.5-5.8, the following approximations are made:

(1) Since Perfex is being used to return data on a complete run, the data is not
broken down by subroutine, let alone memory access pattern. Therefore,
for each type of memory access pattern (e.g., STRIDE-l), this tool assumes
that the same percentage of loads as stores are used in a section. This does
not mean that the STRIDE-l access pattern has both a billion loads and a
billion stores. Rather, it means that if 5% of the total loads exhibit the
STRIDE-l access pattern, we will assume that 5% of the total stores will also
exhibit this access pattern.

(2) For the same reasons as in (1), we will assume that the same percentage of
multiply-adds, adds, multiplies, and integer operations unrelated to
address calculations (normally, the number of these calculations will be
zeroed out for floating point intensive applications) are used for each type
of memory access pattern. Furthermore, we will assume that this
percentage is the same as that calculated in (1).

17

(3) In accordance with the way ENVELOPE is set up, we will assume that each
TLB miss has a cache miss associated with it. This need not be the case if
the cache line is still in the cache, as can happen with a STRIDE-N access
pattern executed with a cyclic basis. However, if the number of data items
is too large or if the access pattern is actually fairly random, then this
assumption is correct. In either case, since Perfex does not provide a way to
distinguish between the two cases, both ENVELOPE and this tool have
been set up to function in this manner. Therefore, this should not result in
any problems.

(4) The recommended values for the group size and group density are 1 unless
known otherwise, in which case, one might want to use the value 1 since
the consequences of the grouping of data were already factored into the
output of Perfex and would be difficult to compensate for at this point.

(5) The number of integer loads and stores is negligible for a floating point
intensive code. So the time required for them can be ignored.

(6) Data reuse at the register level has already been factored in by the compiler,
having eliminated the loads and stores at compile time. Therefore, there
were no “theoretical” loads and stores to be accounted for by the
*SVDEDICATED and *SVGENERAL input parameters. The recommended
output values will then be 1.0 for the “Used” values indicating no data
reuse and 0.0 for the “percentage” values indicating no work is attributed
to this access pattern.

In subsections 5.5-5.8, the following conventions will be used:

ADJMEM = the adjusted number of memory operations.
ClLl = the number of Ll cache misses attributed to anything other than a

STRIDE-N (or random) access pattern. This can result from either a STRIDE-l
access pattern or a second larger working set that fits into the L2 but not the Ll
cache.

ClL2 = the number of L2 cache misses attributed to anything other than a
STRIDE-N (or random) access pattern. Primarily, this is expected to be the
result of a STRIDE-l access pattern.

CGBLl = The Ll cache misses associated with a larger working set (e.g., from a
blocked access pattern involving large “global” arrays).

CN = the number of cache misses attributed to a STRIDE-N (or random) access
pattern.

DSIZE = the size of the data item in bytes (usually 8).
DPERLl = LlLSIZE/DSIZE = the number of data elements per Ll cache line.
DPERL2 = L2LSIZE/DSIZE = the number of data elements per L2 cache line
LlLSIZE = the size of the cache line in the Ll cache.
LlMISS = the number of Ll cache misses.
LlPERL2 = L2LSIZE/LlLSIZE =,the number of Ll cache lines per L2 cache lines.
L2LSIZE = the size of the cache line in the L2 cache.

18

L2MISS = the number of L2 cache misses.
L2PERPAGE = PAGESIZE/L2LSIZE = the number of L2 cache lines per page.
NLOADS = the number of LOADS that graduated (completed).
NSTORES = the number of STORES that graduated.
PAGESIZE = the page size in bytes.
PERGl = The percentage of the memory operations with a STRIDE-l access

pattern. Initially, this value will be set to 0.0.
PERGB = The percentage of the memory operations associated with the blocked

memory access pattern associated with the larger working set.
PERGN = The percentage of the memory operations with a STRIDE-N access

pattern.
PERSA = The percentage of the memory operations associated with the use of

small scratch arrays in the smaller working set.
TLBMISS = the number of TLB misses.
USEGl = The data use/reuse for the STRIDE-l access pattern. Initially, this value

will be set to 1.0, indicating no reuse. However, if the value for PERGl changes
from its initial value of 0.0, this number wiIl be recalculated.

USEGB = The data use/reuse associated with the blocked memory access pattern
associated with the larger working set.

USEGN = The data use/reuse for the STRIDE-N access pattern. This will always
be hardwired as 1.0, indicating no reuse. This does not really matter since any
reuse that does occur will simply be charged to another access pattern in a
manner that does not result in additional TLB or cache misses.

5.5 Solving for the STRIDE-N Access Pattern Parameters

The next stage of the process is to solve for the STRIDE-N access parameters,
since that will tell us how many L2 misses remain to be allocated among the
remaining access patterns. Again, reasonable checks will be made and, if
necessary, the values will be adjusted accordingly. The need for this can have
any number of sources (e.g., extraneous cache and TLB misses due to
timesharing a processor or alternatively process migration on a shared memory
SMP). The tool wiIl now solve the following system of equations:

L2MISS = ClL2 + CN. (59)

TLBMISS = ClL2
L2PERPAGE

+ CN.

Solving for ClL2 and CN, one comes up with the following equations:

c1L2 = L2MISS - TLBMISS

l.O- l*O
L2PERPAGE

CN = L2MISS - ClL2.

(61)
(62)

19

Performing the sanity checks, one ends up with

If ClL2 < 0.0, then

ClL2 = 0.0 and

CN = L2MISS. (63)

Otherwise, if CN < 0.0, then

ClL2 = L2MISS and

CN = 0.0.

ADJMEM = NLOADS + NSTORES.

w

(65)

PERGN= CN
ADJMEM’ (66)

ADJMEM = ADJMEM - CN. (67)

ClLl = LlMISS - CN. (68)

CGBLI = ClLl - ClL2 * LlPERL2. (69)

5.6 Solving for the Blocked Access Pattern Parameters

Now that the STRIDE-N access pattern has been accounted for and the number
of memory operations and cache misses that remain to be accounted for is
known, we proceed to the question of the existence of a large working set which
will live out of the L2 cache. The heuristic that will be used at this point is
somewhat arbitrary but is based on the concept that unless there is a reasonable
amount of data reuse, one cannot say that a working set exists.

If ClLl
LlPERL2 * ClL2

~4.0, then we have a large working set, and the following

equations are used:

PERGl = 0.0. (70)

USEGl = 1 .O. (71)

This implies that all of the remaining L2 cache misses will be charged to the
blocked access pattern, with no work assigned to a STRIDE-l access pattern. This
is a somewhat arbitrary assignment. However, since both access patterns will
produce the same ratio between TLB misses and L2 cache misses, this should not
be a problem as long as the working set fits into the cache. If one moves onto a
system that lacks an L2 cache or where the cache is too small, then one needs to
specify if ENVELOPE is to treat the resulting access pattern as if it is STRIDE-l or
STRIDE-N. The recommended default when using this tool is STRIDE-l, which is
specified by negating the estimated size of the working set to be discussed in
more detail in section 5.8.

20

The tool now assumes that all of the Ll cache misses are the result of this larger
working set, since if a smaller working set also exists, it will live out of the Ll
cache. As such, the smaller working set is expected to have a negligible cache
miss rate. This corresponds to the use of small scratch arrays (the SA input
parameters for ENVELOPE).

ADJMEM = ADJMEM - ClLl * DPERLl.
(72)

If ADJMEM < 0.0, then
ADJMEM = 0.0. (73)

PERGB = ClLl * DPERLl
NLOADS + NSTORES’

USEGB =
ClLl

LlPERL2 * ClL2 ’

PERSA =
ADJMEM

NLOADS + NSTORES’ (76)

The recommended size for the large working set is 1.0 MB, with a STRIDE-l
access pattern if the cache is too small. The choice of 1.0 MB is somewhat
arbitrary but is based on most SGI systems in recent years using a L2 cache size
of l-8 MB. Furthermore, most of the competing systems, when equipped with a
large cache, also have a cache size of at least 1 MB. However, experience has
indicated that some of the NAS benchmarks have a large working set small
enough to fit in the caches of the Cray T3E and the IBM SP with Power 2 Super
Chips. Therefore, prudence dictates that one might want to compare the
predicted performance to the measured performance on one of these systems in
an attempt to fine-tune this parameter. All we know for certain is that the size of
the larger working set is somewhere between the size of the Ll and L2 caches.
This concludes the handling of the situation in which a large working set occurs.
Subsections 5.7 and 5.8 only apply to the situation where a working set is either
missing or not very effective.

5.7 Checking for the Case of a Small Working Set Without a Large
Working Set

The tool starts out by setting the parameters that describe the larger working set,
causing that access pattern to be skipped by ENVELOPE.

PERGB = 0.0. (77)

USEGB = 1.0. (78)

Once again, the tool uses a heuristic to check to see if a small working set exists
and is effective.

21

If
ADJMEM

DPERLl * CGBLl
2 4.0, then we have a small working set. This means that

there is a cache resident small scratch array. The tool now calculates what
percentage of the memory operations involve this small working set and what
percentage needs to be mapped to the STRIDE-l access pattern to achieve the
correct number of L2 cache misses and TLB misses. It should be noted that the
small working set is assumed to have an insignificant number of L2 cache misses
and TLB misses associated with it. Since the STRIDE-l access pattern is being
used only to the extent necessary to account for the L2 cache misses and the TLB
misses, it will be assigned a data use/reuse value of 1.0, indicating that all data
reuse is associated with the small working set.

PERSA = AIXMEM - ClL2 * DPERL2
NLOADS + NSTORES

If PERSA > 1.0, then

PERSA = 1.0. (80)

PERGl = 1.0 - PERSA - PERGN. (81)

If PERGl > 1.0, then

If PERSA < 0.0, then

PERGl = 1.0. (82)

PERSA = 0.0. (83)

USEGl = 1.0. (84

The last remaining value is the estimated size of the smaller working set. All we
know for certain is that it has to fit into the 32 kB cache of the MIPS RlOK or
R12K processor of the system that has been used. It probably is somewhat
smaller than that, so the tool recommends the value of 12 kB, which is a safe
number for almost all of the RISC processors made since 1990. The tool has now
completed its task, and subsection 5.8 should be skipped.

5.8 Handling the Case Where No Working Sets Exist

The tool has now determined that no working sets exist, so all of the data access
must be mapped to either a STRIDE-N access pattern or a STRIDE-l access
pattern. In subsection 5.5, the portion mapped to the STRIDE-N access pattern
was calculated, leaving the STRIDE-l access pattern to be handled now.

PERSA = 0.0. (85)

PERGGI = 1.0 - PERGN. (86)

USEGl = ADJMEM
DPERL2 * ClL2

22

The only complicated part of this is that any data reuse that occurs must now be
mapped to the STRIDE-l access pattern, as was done in the last equation. This
concludes the discussion of the equations and logic behind this tool.

6. Future Work

Work is currently under way to improve the usability of this code. Additionally,
research has been initiated to try and identify what characteristics of a parallel
code need to be taken into consideration when estimating the performance of a
parallel program. Unfortunately, our initial experience in this area indicates that
this is a highly complex problem that is probably too difficult to tackle in the
general case. We hope that in the future, we will be able to produce useful
simulators for some of the more commonly found cases.

7. Results and Conclusions

We have created an entirely new simulator based on Back-of-the-ENVELOPE
calculations that is capable of simulating the performance of computationally
intensive workloads in a short fixed amount of time. An associated tool that
makes the simulator friendlier to use has also been discussed. Experience with
using ENVELOPE has shown that in almost alI cases, it can accurately predict the
performance of the user’s code to within a factor of 2 of the measured value.
Furthermore, in many cases, we were able to achieve agreement with
experimental results to within *lo-15 % .

23

Table 1. Input parameters for an IBM SP with 375 MHz for the Linpack Power 3 Thin SMP nodes 100 x 100 benchmark.

Input Data Annotations Produced by ENVELOPE for ENVELOPE.INPUTS Additional Comments

400.00
8.000000

128
8000.000

4
800.00

1000.0000
1000.0000
1000.0000

2
1500.0000
750.0000
750.0000

m
Y
Y

10
1500.0000

8
7.6700002E-03
2.5599999E-03
343000.0

0.0000000E+00
0.0000000E+00
7.9999998E-02
1 .oooooo
1 .oooooo

0.0000000E+00

memory latency in NS
cache size in MB

cache line size in bytes
cache bandwidth for hits in MB/second

page size in kB
TLB latency in NS
memory bandwidth for reads in MB/second
memory bandwidth for writes in MB/second
memory bandwidth for a mix of reads/writes MB/second

the number of “bus” transactions per write miss
the peak speed when performing MADDS
the peak speed when performing Multiplies
the peak speed when performing Adds

the pipeline depth
Out-of-Order execution
Register Renaming

the maximum number of outstanding prefetches/cache misses
peak rate for integer operations

size of the data item in bytes
the amount of data being loaded into the processor in GB
the amount of data being stored by the processor in GB
the number of madds
the number of multiplies, etc.
the number of adds, etc.
the memory footprint (RSS)
is the size of the group

is the density of the group
the number of integer operations

Characteristics of the hardware.

General characteristics of the
software.

Table 1. Input parameters for an IBM SP with 375 MHz for the Linpack Power 3 Thin SMP nodes 100 x 100 benchmark (continued).

Input Data Annotations Produced by ENVELOPE for ENVELOPE.INPUTS

1.000000 Used RLSVDEDICATED
0.0000000E+00 Percentage LSVDEDICATED
1 .oooooo Used RSSVDEDICATBD

0.0000000E+00 Percentage SSVDEDICATED
0.0000000E+00 Percentage SVMADDS
0.0000000E+00 Percentage SVMULTIPLIES
0.0000000E+00 Percentage SVADDS
0.0000000E+00 Percentage SVIORS
100.0000 Used RLSVGENERAL
33.33333 Percentage LSVGENERAL
1 .oooooo Used RSSVGENERAL
0.0000000E+00 Percentage SSVGENERAL
1.000000 Used RLSADEDICATED
0.0000000E+00 Percentage LSADEDICATED
1.000000 Used RSSADEDICATED
0.0000000E+00 Percentage SSADEDICATED
0.0000000E+00 Percentage SAMADDS
0.0000000E+00 Percentage SAMULTIPLIES
0.0000000E+00 Percentage SAADDS
0.0000000E+00 Percentage SAIOPS
1 .oooooo Used RLSAGENERAL
0.0000000E+00 Percentage LSAGENERAL
1 .oooooo Used RSSAGENERAL
0.0000000E+00 Percentage SSAGENERAL
l.l70000E-02 the scratch array memory footprint

Additional Comments

Operations only involving data
held in registers.

Other operations involving data
held in registers.

Operations only involving scratch
arrays and data held in registers.

Other operations involving scratch
arrays.

Working set size.

Table 1. Input parameters for an IBM SP with 375 MHz for the Linpack Power 3 Thin SMP nodes 100 x 100 benchmark (continued).

Input Data Annotations Produced by ENVELOPE for ENVELOPE.INPUTS Additional Comments

1 .oooooo Used CLGB Operations involving either a
0.0000000E+00 Percentage LGB blocked access pattern or a second,
1 .oooooo Used CSGB larger working set.

0.0000000E+00 Percentage SGB
0.0000000E+00 Percentage GBMADDS
0.0000000E+00 Percentage GBMULTIPLIES
0.0000000E+00 Percentage GBADDS
0.0000000E+00 Percentage GBIOPS
1 .oooooo the block size
1 .oooooo Used CLGN Operations involving a Stride N

0.0000000E+00 Percentage LGN access pattern.
1 .oooooo Used CSGN

0.0000000E+00 Percentage SGN
0.0000000E+00 Percentage GNMADDS
0.0000000E+00 Percentage GNMULTIPLIES
0.0000000E+00 Percentage GNADDS
0.0000000E+00 Percentage GNIOPS
1.670000 Used CLGl Operations involving a Stride 1
67.00000 Percentage LGl access pattern.
1 .oooooo Used CSGl
100.0000 Percentage SGl
100.0000 Percentage GlMADDS
100.0000 Percentage GlMULTIPLIES
100.0000 Percentage GlADDS
100.0000 Percentage Gl IOPS

Table 2. Input parameters for an IBM SF’ with 375-MHz Power 3 Thin SMP nodes for the CG NAS benchmark (class B using MPI) with
prefetching “disabled.”

Input Data Annotations Produced by ENVELOPE for ENVELOPE.INPUTS Additional Comments

400.0000 memory latency in NS Characteristics of the hardware.
8.000000 cache size in MB

128 cache line size in bytes
8000.000 cache bandwidth for hits in MB/second

4 page size in kB
800.0000 TLB latency in NS
1000.000 memory bandwidth for reads in MB/second
1000.000 memory bandwidth for writes in MB/second
1000.000 memory bandwidth for a mix of reads/writes MB/second

2 the number of ‘bus” transactions per write miss
1500.000 the peak speed when performing MADDS
750.0000 the peak speed when performing Multiplies
750.0000 the peak speed when performing Adds

m the pipeline depth

Y Out-of-Order execution

Y Register Renaming
1 the maximum number of outstanding prefetches/cache misses

1500.000 peak rate for integer operations
8 size of the data item in bytes General characteristics of the

628.0000 the amount of data being loaded into the processor in GB software.
8.407000 the amount of data being stored by the processor in GB

2.8706488E+lO the number of madds
0.0000000E+00 the number of multiplies, etc.
0.0000000E+00 the number of adds, etc.
776.0000 the memory footprint (RSS)
1.000000 is the size of the group
1.000000 is the density of the group

0.0000000E+00 the number of integer operations

Table 2. Input parameters for an IBM SP with 375-MHz Power 3 Thin SMP nodes for the CG NAS benchmark (class B using MPI) with
prefetching “disabled” (continued).

Input Data Annotations Produced by ENVELOPE for ENVELOPE.INPUTS Additional Comments

1 .oooooo Used RLSVDEDICATED Operations only involving data
0.0000000E+00 Percentage LSVDEDICATED held in registers.
1 .oooooo Used RSSVDEDICATED

0.0000000E+00 Percentage SSVDEDICATED
0.0000000E+00 Percentage SVMADDS
0.0000000E+00 Percentage SVMULTIPLIES
0.0000000E+00 Percentage SVADDS
0.0000000E+00 Percentage SVIOPS
1 .oooooo Used RLSVGENERAL Other operations involving data

0.0000000E+00 Percentage LSVGENERAL held in registers.
1 .oooooo Used RSSVGENERAL

0.0000000E+00 Percentage SSVGENERAL
1 .oooooo Used RLSADEDICATBD Operations only involving scratch

0.0000000E+00 Percentage LSADEDICATED arrays and data held in registers.
1 .oooooo Used RSSADEDICATED

0.0000000E+00 Percentage SSADEDICATED
0.0000000E+00 Percentage SAMADDS
0.0000000E+00 Percentage SAMULTIPLIES
0.0000000E+00 Percentage SAADDS
0.0000000E+00 Percentage SAIOI’S
1 .oooooo Used RLSAGENERAL Other operations involving scratch

0.0000000E+00 Percentage LSAGENERAL arrays.
1 .oooooo Used RSSAGENERAL

0.0000000E+00 Percentage SSAGENERAL
1.170000E-02 the scratch array memory footprint Working set size.

.

Table 2. Input parameters for an IBM SP with 375-MHz Power 3 Thin SMP nodes for the CG NAS benchmark (class B using MPI) with
prefetching “disabled” (continued).

Input Data

1.000000
0.0000000E+00
1 .oooooo
0.0000000E+00
0.0000000E+00
0.0000000E+00
0.0000000E+00
0.0000000E+00
-0.1100000

1.000000
2.2634468E-03
1.000000

2.2634468E-03
2.2634468E-03
2.2634468B03
2.2634468E-03
2.2634468E-03
2.055018
99.99773
2.055018
99.99773
99.99773
99.99773
99.99773
99.99773

Annotations Produced by ENVELOPE for ENVELOPE.INPUTS Additional Comments

Used CLGB
Percentage LGB
Used CSGB
Percentage SGB
Percentage GBMADDS
Percentage GBMULTIPLIES
Percentage GBADDS
Percentage GBIOPS
the block size
Used CLGN
Percentage LGN
Used CSGN
Percentage SGN
Percentage GNMADDS
Percentage GNMULTIPLIES
Percentage GNADDS
Percentage GNIOPS
Used CLGl
Percentage LGl
used CSGl
Percentage SGl
Percentage GlMADDS
Percentage GlMULTIPLIES
Percentage GlADDS
Percentage GlIOPS

Operations involving either a
blocked access pattern or a second,
larger working set.

Operations involving a Stride N
access pattern.

Operations involving a Stride 1
access pattern.

I System

02K-195
02K-195
02K-195
02K-195
02K-195
02K-195
02K-195
02K-195
02K-195
02K-195
02K-195

Table 3. A comparison of predicted results from ENVELOPE to measured results.

Benchmark

Linpack 100 x 100
BT
CG
LU
LU
LU
SP
SP
F3D-shared
F3D-distributed

CTH
BT
CG
LU
LU
SP
SP

Predicted Measured

Speed Speed
(MFLOPS) (MFLOPS)

132 114
64 55
43 39
74 92

108 92
74 44
50 42
63 42

205 177
55 50

152 87
152 87

68 79
47 38
78 85

117 85
52 68
67 68

Measured

Predicted
0.86
0.86
0.91
1.24
0.85
0.59
0.84
0.67
0.86
0.91
0.57
0.57
1.16
0.81
1.09
0.73
1.31
1.01

Source

t31
[51
151
151
[5], assuming a dedicated node and TLB misses to L2 cache.
[61
151
[5], assuming a dedicated node.

t71
181
[8], assuming that prefetching is ineffective.
[61
[91
191
[9], assuming a dedicated node and TLB misses to L2 cache.
191
[9], assuming a dedicated node.

Table 3. A comparison of predicted results from ENVELOPE to measured results (continued).

Predicted Measured Measured
System Benchmark Speed Speed Source

(MFLOPS) (MFLOES) Predicted
02K-300 Linpack 100 x 100 179 173 0.97 [31
02K-300 BT 70 72 1.03 161
02K-300 CG 49 44 0.90 161
02K-300 LU 81 88 1.09 El
02K-300 LU 124 88 0.71 [6], assuming a dedicated node and TLB misses to L2 cache.
02K-300 SP 54 69 1.28 [61
02K-300 SP 70 69 0.99 [6], assuming a dedicated node.
02K-300 FSD-shared 264 248 0.94
02K-300 F3D-distributed 59 62 1.05 [71
02K-300 Cl-H 208 125 0.60 P31
02K-300 CTH 209 125 0.60 [8], assuming that prefetching is ineffective.
03K-400 Linpack 100 x 100 273 199 0.73 DOI
03K-400 BT 128 130 1.02 1101
03K-400 CG 90 69 0.77 1101
03K-400 CG 53 69 1.30 [lo], assuming that prefetching is ineffective.
03K-400 . LU 127 224 1.76 [lOI
03K-400 LU 179 224 1.25 [lo], assuming a dedicated node and TLB misses to L2 cache.
03K-400 SP 74 122 1.65 1101
03K-400 SP 127 122 0.96 [lo], assuming a dedicated node.
03K-400 F3D-shared 397 377 0.95
03K-400 292 193 0.66 181
03K-400 CTH 252 193 0.77 [8], assuming that prefetching is ineffective.
SUN El0000 F3D-shared 225 180 0.80
SUN El0000 CTH 187 97 0.52 [81
SUN El0000 CTH 156 97 0.62 [S], assuming that prefetching is ineffective.

System

T3E-1200
T3E-1200
T3E-1200
T3E-1200
T3E-1200
T3E-1200
T3E-1200
T3E-1200
T3E-1200
T3E-900
T3E-900
T3E-900
T3E-900
T3E-900
T3E-900
T3E-900
T3E-900
P2-66.7
P2-66.7
P2SC-120
P2SC-120
P2SC-120
P2SC-120
P2sC-120
P2SC-120

P2SC-135

Table 3. A comparison of predicted results from ENVELOPE to measured results (continued).

-
Predicted Measured Measured

Benchmark Speed Speed Source
(MFLOPS) (MFLOPS) Predicted

BT 156 67 0.43 151
BT 54 67 1.24 [5], assuming poor use of prefetching.
CG 92 10 0.11 151
CG 32 10 0.31 [5], assuming poor USC of prefctching.
LU 152 79 0.52 [51
SP 91 50 0.55 151
SP 49 50 1.02 [5], assuming poor USC of prefetching.
F3D-distributed 127 57 0.45 [71
F3D-distributed 47 57 1.21 [7], assuming poor use of prefetching.
BT 138 58 0.42 151
BT 52 58 1.12 [5], assuming poor use of prefetching.
CG 81 11 0.14 151
CG 30 11 0.37 [5], assuming poor use of prefetching.
LU 137 66 0.48 [51
SP 84 44 0.52 t51
SP 47 44 0.94 [5], assuming poor use of prefetching.
F3D-distributed 118 43 0.36 171
CTH 86 63 0.73 181
CTH 77 63 0.82 [S], assuming that prefetching is ineffective.
Linpack 100 x 100 198 233 1.18 t31
Linpack 100 x 100 198 233 1.18 131, TWEAKED input that the pipeline depth was short.
BT 148 104 0.70 t51
LU 126 97 0.77 151
LU 144 97 0.67 151, assuming TLB misses to cache.
SP 68 72 1.06 151

. ___ _-^ --_ ?.I?- * -,-I r?- 1 Linpack 100 x 1UU 1 uv I LO3 1 l.LU 1 131

L c

Table 3. A comparison of predicted results from ENVELOPE to measured results (continued).

c .

System

I’2sC-160
l’2SC-160
P2SC-160
P2SC-160
I’2SC-160
I’2SC-160
P2SC-160
P2SC-160
P2SC-160
POWER3-200
POWER3-200
POWER3-200
POWER3-200
POWER3-200
POWER3-200
POWER3-200
POWER3-200
POWER3-222
POWER3-222
POWER3-222
POWER3-222
POWER3-222
POWER3-222
POWER3-222
POWER3-222

Benchmark

Linpack 100 x 100
BT
CG
CG
LU
LU
SP
F3D-distributed
F3D-distributed
Linpack 100 x 100
BT
BT
CG
CG
LU
LU
SP
Linpack 100 x 100
BT
BT
CG
CG
LU
LU
SP

Predicted Measured
Speed Speed

(MFLOPS) (MFLOPS)
256 315
169 131
112 31

80 31
138 129
160 129

73 92
123 33

92 33
295 233
147 108
135 108
86 44
79 44

152 147
222 147

94 84
363 250
215 105

71 105
136 74
42 74

139 141
174 141
66 77

Measured

Predicted
1.23
0.78
0.28
0.39
0.93
0.81
1.26
0.27
0.36
0.79
0.73
0.80
0.51
0.56
0.97
0.66
0.89
0.69
0.49
1.48
0.54
1.76
1.01
0.81
1.17

Source

r31
I51
151
[5], assuming poor use of prefetching.
141
[4], assuming TLB misses to cache.
[51
171
[7], assuming poor use of prefetching.
[ill
[41
[4], assuming poor use of prefetching.
141
[4], assuming poor use of prefetching.
141
[4], assuming a dedicated node and TLB misses to L2 cache.
141
t31
[12] (the measured results are for the class A data set).
[12], assuming poor use of prefetching.
1131
[13], assuming poor use of prefetching.
[12] (the measured results are for the class A data set).
[12], assuming a dedicated node and TLB misses to L2 cache.
[12] (the measured results are for the class A data set).

Table 3. A comparison of predicted results from ENVELOPE to measured results (continued).

System Benchmark

POWER3-375-Thin
POWER3-375-Thin
POWER3-375-Thin
POWER3-375-Thin
POWER3-375-Thin
POWER3-375-Thin
POWER3-375-Thin
POWER3-375-Thin
POWER3-375-Thin
POWER3-375-High
POWER3-375-High
POWER3-375-High
POWER3-375-High
POWER3-375-High
POWER3-375-High
POWER3-375-High
DS20-500
LIS20-500
DS20-500
DS20-500
D!520-500
DS20-500
DS20-500
DS20-500

Linpack 100 x 100
BT
BT
CC
CG
LU
LU
SP
SP
Linpack 100 x 100
CG-
CG
LU
LU
CTH
CTH
Linpack 100 x 100
Linpack 100 x 100
BT
CG
CG
LU
LU
SP

Predicted Measured
speed Speed

(MFLOI’S) (MFLOPS)
357 426

90 74
90 74
54 45
54 45
92 224

238 224
56 86
79 86

505 424
110 56

45 45
129 288
195 288
409 272
309 272
336 440/270
358 440/270
204 206/174
122 95/90

47 95/90
187 146/137
211 146/137
107 192/127

Measured

Predicted
1.19
0.82
0.82
0.83
0.83
2.43
0.95
1.54
1.09
0.84
0.51
1.24
2.23
1.53
0.67
0.88

1.31/0.82
1.23/0.75
1.01/0.85
0.78/0.74
2.02/1.91
0.78/0.73
0.66/0.62
1.79/1.19

Source

141, assuming poor use of prefetching.
[41
[4], assuming poor use of prefetching.
]41
[4], assuming a dedicated node and TLB misses to L2 cache.
141
141, assuming a dedicated node.
1141
t151
[15], assuming poor use of prefetching.
1151
[15], assuming a dedicated node and TLB misses to L2 cache.
k31
[8], assuming that prefetching is ineffective.
[3] (two significantly different values were reuorted).
[3], assuming a dedicated system.

1

[16] (TRU64/Linux) class A data set.
1161 (TRU64/Linux) class A data set.
1161, assuming poor use of prefetching.
[16] (TRU64/Linux) class A data set.
1161, assuming TLB misses to L2 cache.
[16] (TRU64/Linux) class A data set.

L *

Table 3. A comparison of predicted results from ENVELOPE to measured results (continued).

Predicted Measured Measured
System Benchmark Speed Speed Source

(MFLOPS) (MFLOPS) Predicted
ES40-500 BT 204 194/175 0.95/0.86 [16] (TRU64/Linux) class A data set.
ES40-500 CG 122 90/87 0.74/0.72 1161 (TRU64/Linux) class A data set.
ES40-500 CG 47 90/87 1.91/1.85 [16], assuming poor use of prefetching.
ESZO-500 LU 187 190/132 1.02/0.71 1161 (TFXJ64/Linux) class A data set.
ES40-500 LU 211 190/132 0.90/0.63 [16], assuming TLB misses to L2 cache.
ES40-500 SP 135 161/142 1.19/1.05 [16] (TRU64/Linux) class A data set.
ES40-667 LlOO 430 561 1.30 131
ES40-667 LlOO 466 561 1.20 131, assuming a dedicated system.
ES40-667 BT 226 150 0.66 1171
E%O-667 CG 137 110 0.80 1181
ES40-667 CG 49 110 2.24 [181, assuming poor use of prefetching.
E!+IO-667 LU 202 250 1.24 1171
ES40-667 LU 231 250 1.08 1171, assuming TLB misses to L2 cache.
E%O-667 SP 113 150 1.33 1171
ES40-667 SP 127 150 1.18 1171, assuming a dedicated system.
Pentium-II-450 Linpack 100 x 100 116 98 0.84 r31
Pentium-II-450 BT 39 56 1.44 1191
Pentium-II-450 CG 27 28 1.04 t191
Pentium-II-450 CG 27 28 1.04 [19], assuming poor use of prefetching.
Pentium-II-450 LU 50 100 2.00 [191
Pentium-II-450 LU 102 100 0.98 [19], assuming a dedicated node and TLB misses to L2 cache.
Pentium-II-450 SP 47 47 47 1191
Pentium-III-733 BT 41 58 1.41 1191
Pentium-III-733 CG 29 38 1.31 1191
Pentium-111-733 CG 29 38 1.31 [19], assuming poor use of prefetching.
Pentium-III-733 LU 53 106 2.00 t191
Pentium-III-733 LU 116 106 0.91 [19], assuming a dedicated node and TLB misses to L2 cache.
Pentium-III-733 SP 38 39 1.03 1191

System

HP 8000-180
HP 8000-l 80
HP 8000-180
HP 8000-180
HP 8000-180
HP 8500440
HP 8500440
HP 8500-440
HP 8500440
I IP Superdome
HP Superdome
HP Superdome

\lotes:

Table 3. A comparison of predicted results from ENVELOPE to measured results (continued).

Benchmark

Linpack 100 x 100
BT
BT
LU
SP
Linpack 100 x 100
F3D-shared
F3D-shared
F3D-shared
F3D-shared
F3D-shared
F3D-shared

Predicted Measured
Speed Speed

(MFLOPS) (MFLOPS)
234 156
118 59
34 59

108 65
77 56

467 375
507 311
417 311
380 311
671 527
580 527
558 527

Measured

Predicted

0.67
0.50
1.84
0.61
0.73
0.80
0.61
0.75
0.82
0.79
0.91
0.94

Source

131
t51
[5], assuming poor use of prefetching.
151
t51
131

Assuming prefetching is 40% effective.
Assuming prefetching is 30% effective.

Assuming prefetching is 40% effective.
Assuming prefetching is 30% effective.

l The NAS benchmarks BT, CG, LU, and SI’ are for the class B data set using the MI’1 version of the code (NPB 2).
l Some codes do not seem to lend themselves to benefiting from certain architectural features (e.g., prefetching and multiply-add [maddl instructions). In

some cases, a second set of predicted values was calculated to see if turning off a particular feature would bring the prediction more in line with the
measured value.

l There has also been some confusion caused by multiple versions of the MI’1 NAS benchmarks. Over time, the optimization of these codes has improved
(at least for some platforms). Depending on which version of code was used to collect the Perfex data and which version was used for the measured
data, the results can vary by more than what would be expected.

l In estimating the working sizes of potential working sets, we had to make some guesses. Working sets that fit in the Ll cache are known to be no more
than 32 kB in size (the size of the Ll cache on the machines being used to run Perfex). However, we estimate the size of the working set to be 12 kB as a
matter of policy.

l Similarly, the size of working sets that fit in the L2 cache, but not the Ll, are known to be no more than the size of the L2 (l-8 MB, depending on the
system being used). We choose to estimate the size to be 1 MB. However, in some cases, we got significantly better agreement by decreasing the size to
what would fit in the cache of a particular machine (e.g., 100 kB for the 128-kB cache of the P2SC or 80 kB for the 96-kB cache of the T3E). The
justification for this is that these numbers are more guesses than estimates and therefore should be adjusted to fit the actual data. In most cases where
the adjustments were made, the need a’hd appropriateness was immediately apparent since the difference in the predicted level of performance might
vary by as much as a factor of 10.

* Y

l The available memory bandwidth and memory latency-for a shared memory system can be difficult to get right. If the measurements were made using
a single processor on a dedicated system, then the measured level of performance might be artificially inflated (the job can use more than its fair share
of the memory bandwidth for prefetching. Similarly, if the job can be “locked” onto a single processor of a system with nonuniform memory access
times, then the latency might be significantly less than would be otherwise measured (e.g., on the SGI 02K, this can affect performance by up to a factor
of 3).

l F3D refers to an implicit CFD code out of NASA Ames that has been modified by the author to run efficiently on shared memory cache-based
architectures such as the SGI Origin 2000. A second version of the code was created by Marek Behr, formerly of the U.S. Army High Performance
Computing Research Center, and was optimized to run on distributed memory platforms. The shared memory version of F3D uses the native (pre
OpenMP) compiler directives to parallelize the code, while the distributed memory version of F3D uses SHMEM calls on systems that support them
(e.g., the Cray T3D, Cray T3E, and the SGI Origin 2000) and MPI for other systems. The performance of the shared memory version of the code was
measured for single processor runs. The performance of the distributed memory version of the code was measured using eight processor runs, which,
in some cases, might result in the underestimation of the single processor performance. Unfortunately, memory limitations make it difficult to run this
version on a single processor. The test-case was a l-million grid point projectile (three zones with turbulence turned on).

l CTH is a CSM code out of the DOE running. The test case and results were supplied by Steve Schraml of ARL.

Table 4. A sample run of the program that uses Perfex data to suggest the input
parameters for use with the program ENVELOPE.

$velope.perfex-guide
This program is designed to request a limited amount of information (some hardware and some from
running PERFEX or a similar tool) and then to output a recommended set of input for some of the
input values requested by the program envelope. This program makes heavy use of heuristics, so in
no way is it as accurate as a line-by-line analysis of the source code. However, in many cases, it will be
good enough. One point of caution: The values for “the scratch array memory footprint” and “the
block size” are guesses. They could be larger than these guesses (up to the limits of the size of the Ll
and I.2 cache, respectively). It is even possible that work assigned to large global blocked arrays
represents a second working set that should be assigned to the scratch arrays or vice-versa. The
rationale for doing things the way they have been done is that it supports two distinct working set
sizes within the constraints of the ENVELOPE program.
===========p==
We will start off by trying to estimate the number of floating point MADD, ADD, and MULTIPLY
instructions. This is an imperfect process. In particular, it is sometimes difficult to know what to call a
MADD, since the SGl hardware can efficiently process independent ADDS and MULTIPLIES in the
same cycle. In theory, this can result in up to a factor of 2 difference between the predicted and
measured levels of performance. The only solution to this problem is to compare the prediction for the
system used to run PERFEX, with the measured number, and to then fine-tune the numbers
accordingly.

This section of the program can work in three ways:
1) Skip this section entirely.
2) Combine Perfex data with an a priori knowledge of the total number of floating point operations to
estimate things.
NOTE: The a priori knowledge can be easily gamed by measuring the number of floating point
instructions with MADDS turned off. On the SGI Origin, this is done by compiling with the -mips3
option.
3) Combine Perfex data with numbers from the Cray Hardware Performance Monitor to estimate
things.

What do you want to do (enter 1,2, or 3)?
2
What is the total number of floating point operations?
5.8937688ElO
What is the number of Graduated Floating Point instructions (from Perfex)?
27917089584
For the purpose of running ENVELOPE, it is estimated that there are:
29468844E+lO the number of madds
0.0000000E+00 the number multiplies, etc.
0.0000000E+00 the number of adds, etc.
NOTE: Given the input, it is generally impossible to precisely know the ratio between ADD and
MULTIPLY instructions, but for the purpose of this program, it doesn’t matter.

Unless you know the memory footprint (e.g., use the number from TOP for RSS), you might want to
assume 1024 MB.

Unless you know the size of the group, assume 1.

Unless you know the density of the group, assume 1.

Unless the code does a lot of integer operations, other than for address calculation, assume 0.0.
====================================-==========================

38

Table 4. A sample run of the program that uses Perfex data to suggest the input
parameters for use with the program ENVELOPE (continued).

What is the Iine size for the Ll cache in bytes (32 bytes on the 02K)?
32
What is the Iine size for the L2 cache in bytes (128 bytes on the 02K)?
128
What is the size of a page of memory (for an Origin 2000 or Origin 3000, use 16 kB) in kB?
16
What is the size of the data item in bytes (usuaIIy 8)?
8
How many LOADS graduated (from Perfex)?
84240901392
How many STORES graduated (from Perfex)?
1128365872
What is the Ll Miss rate (from Perfex)?
3672073573552
What is the I.2 Miss rate (from Perfex)?
2598239936
What is the TLB Miss rate (from Perfex)?
22215984

Additional values to use as input for ENVELOPE are as follows.
128.0000 cache Iine size in bytes
16.OOOOO page size in kB
627.6436 the amount of data being loaded into the

proc. In GB
8.406981 the amount of data being stored by the

proc. In GB

l.OOOOOO Used RLSVDEDICATED
O.OOOOOOOE+OO Percentage ISVDEDICATED
l.oooooO Used RSSVDEDICATED
0.OOOOOO0E+OO Percentage SSVDEDICATED
O.OOOOOOOE+OO Percentage SVMADDS
O.OOOOOO0E+OO Percentage SVMULTIPLIES
O.OOOOOO0E+OO Percentage SVIOPS
O.OOOOOOOE+OO Percentage SSVDEDICATED
0.00OOOOOE+OO Percentage SSVDEDICATED
1.oooo00 Used RLSVGENERAL

0.00OOOOOE+OO Percentage LSVGENERAL
1 .oooooo Used RSWGENERAL

0.0000000E+00 Percentage SSVGENERAL
1.000000 Used RLSADEDICATED

0.0000000E+00 Percentage ISADEDICATED
1 .oooooo Used RSSADEDICATED

0.0000000E+00 Percentage SADEDICATBD
0.0000000E+00 Percentage SAMADDS
0.0000000E+OO Percentage SAMULTIPLIES
0.0000000E+00 Percentage SAADDS
0.0000000E+00 Percentage SAIOPS
1.000000 Used RLSAGENERAL

0.0000000E+00 Percentage LSAGENERAL
1 .oooooo Used RSSAGENERAL

0.0000000E+00 Percentage SSAGENERAL
1.1700000E-02 the scratch array memory footprint
1.000000 Used CLGB

0.0000000E+00 Percentage LGB
1.000000 Used CSGB

0.0000000E+00 Percentage SGB

39

Table 4. A sample run of the program that uses Perfex data to suggest the input
parameters for use with the program ENVELOPE (continued).

0.0000000E+00 Percentage GBMADDS
0.0000000E+00 Percentage GBMIJLTIPLIES
0.0000000E+00 Percentage GBADDS
0.0000000E+OO Percentage GBIOPS
-1.000000 the block size
1 .oooooo Used CLGN
22634468E-03 Percentage LGN
1 .oooooo Used CSGN
2.2634468E-03 Percentage SGN
2.2634468B03 Percentage GNMADDS
2.2634468E-03 Percentage GNMULTIPLIES
2.2634468E-03 Percentage GNADDS
2.2634468E-03 Percentage GNIOPS
2.055018 Used CLGl
99.99773 Percentage LGl
2.055018 Used CSGl
99.99773 Percentage SGl
99.99773 Percentage GlMADDS
99.99773 Percentage GlMULTIPLIES
99.99773 Percentage GlADDS
99.99773 Percentave GlIOPS

40

8. References

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11

12

13

14

15. ,

Mashey, J. Comp.arch Newsgroup. 25 October 2000.

Manjikian, N. “Multiprocessor Enhancements of the Simple Scalar Tool Set.”
Computer Architecture Nezos, vol. 29, no. 1, New York: ACM Press, March
2001.

The results for the Linpack (100 x 100) Benchmark maintained as part of the
Performance Database Server at <http://www.netlib.org>.

Levesque, J. Personal communication. IBM Research, 12 December 2000.

“Complete NPB 2 Data 11/17/97: Graphs and Tables.” Published
electronically at <http:// www.nas.nasa.gov/Software/NPB>.

Hisley, D., C. Zoltani, and I’. Satya-narayana. Personal communication.
U.S. Army Research Laboratory, Aberdeen Proving Ground, MD, and
Raytheon, U.S. Army Research Laboratory-Major Shared Resource Center,
Aberdeen Proving Ground, MD, 2000.

Behr, M. Personal communication. U.S. Army High Performance
Computing Research Center, Aberdeen Proving Ground, MD, 2000.

Schraml, S., and K. Kimsey. Personal communication. U.S. Army Research
Laboratory, Aberdeen Proving Ground, MD, 2001.

Performance results published electronically at <http://www.ncsa.org>.

“SGI Origin 3000 Series Performance Report 1.0.” Published electronically at

<http:// www.sgi.com>. 20 September 2000.

“IBM Redbook SG24-5155-00.” Published electronically at <http:/ /
www.ibm.com>. October 1998.

“IBM Redbook SG24-5611-00.” Published electronically at <http://
www.ibm.com>. 23 December 1999.

Cappello, F., and D. Etiemble. “Ml’1 versus MPI+OpenMP on the IBM SP for
the NAS Benchmarks.” Published in the conference proceedings for SC2000
and electronically at <http://www.sc2000.org>.

Performance results published electronically at <http://www.ibm.com>.

Snavely, A. Personal communication. San Diego Supercomputer Center,
University of California at San Diego, CA, 2001.

.
16. Performance results published electronically at <http://www. nersc>.

41

17. Patel, J. “ParkBench and EuroBen Benchmarks on the AlphaServerSC.”
Published electronically at <http:// www.cs.utk.edu/-patel/paper html>.

18. Saarinen, S. Personal communication. National Center for Supercomputing
Applications, University of Illinois at Urbana-Champaign, IL, 2001.

19. Hsieh, J., T. Leng, V. Mashayekhi, and R. Rooholamini. “Architectural and
Performance Evaluation of GigaNet and Myrinet Interconnects on Clusters of
Small-Scale SMP Servers.” Published in the conference proceedings for
SC2000 and electronically at <http://www.sc2000.org>.

42

Glossary

ARL U.S. Army Research Laboratory

BLAS Basic Linear Algebra Subprograms

CFD Computational Fluid Dynamics

CISC Complicated Instruction Set Computer - an approach to
processor design that assumes that the best way to get
good performance out of a system is to provide
instructions that are designed to implement key
constructs (e.g., loops) from high-level languages

CSM Computational Structural Mechanics

CPU Central Processing Unit

GFLOPS Billion Floating Point Operations per Second

High-Level Languages Computer languages that are designed to be relatively
easy for the programmer to read and write. Examples of
this type of language are FORTRAN, COBOL, C, etc.

kB Thousand Bytes

Low-Level Languages Computer languages that are designed to reflect the
actual instruction set of a particular computer. In
general, the lowest level language is known as Machine
Code. Just slightly above Machine Code is a family of
languages collectively known as Assembly Code.

MB

MELOPS

MHz

Ml’1

MSRC

NAS

PAP1

Million Bytes

Million Floating Point Operations per Second

Million Hertz (cycles/second)

Message-Passing Interface

Major Shared Resource Center

Numerical Aerospace Simulation- a division of the
Information Sciences and Technology Directorate at
NASA Ames Research Center, Moffett Field, CA

Performance Application Programming Interface

43

RISC

SMP

SPEC

Reduced Instruction Set Computer - an approach to
processor design that argues that the best way to get
good performance out of a system is to eliminate the
Micro Code that CISC systems use to implement most of
their instructions. Instead, all of the instructions will be
directly implemented in hardware. This places obvious
limits on the complexity of the instruction set, which is
why the complexity had to be reduced.

Symmetric Multiprocessor

Standard Performance Evaluation Corporation - a
company formed to create industry standard
benchmarks (mostly for desktop systems)

44

NO. OF
COPIES ORGANIZATION

2 DEFENSE TECHNICAL
INFORMATION CENTER
DTIC OCA
8725 JOHN J KINGMAN RD
SE 0944
FT BELVOIR VA 22060-6218

1 HQDA
DAM0 FDT
400 ARMY PENTAGON
WASHINGTON DC 20310-0460

1 OSD
OUSD(A&T)/ODDR&E(R)
DRRJTREW
3800 DEFENSE PENTAGON
WASHINGTON DC 20301-3800

1 COMMANDING GENERAL
US ARMY MATERIEL CMD
AMCRDA TF
5001 EISENHOWER AVE
ALEXANDRIA VA 22333-0007

1 INST FOR ADVNCD TCHNLGY
THE UNIV OF TEXAS AT AUSTIN
3925 W BRAKER LN STE 400
AUSTIN TX 78759-5316

1 US MILITARY ACADEMY
MATH SC1 Cl-R EXCELLENCE
MADN MATH
THAYER HALL
WEST POINT NY 10996-1786

1 DIRECTOR
US ARMY RESEARCH LAB
AMSRL D
DR D SMITH
2800 POWDER MILL RD
ADELPHI MD 20783-1197

NO. OF
COPIES ORGANIZATION

3 DIRECTOR
US ARMY RESEARCH LAB
AMSRL CI LL
2800 POWDER MILL RD
ADELPHI MD 20783-1197

3 DIRECTOR
US ARMY RESEARCH LAB
AMSRL CI IS T
2800 POWDER MILL RD
ADELPHI MD 20783-1197

ABERDEEN PROVING GROUND

2 DIR USARL
AMSRL CI LP (BLDG 305)

1 DIRECTOR
US ARMY RESEARCH LAB
AMSRL CI AI R
2800 POWDER MILL RD
ADELPHI MD 20783-1197

45

NO. OF
COPIES ORGANIZATION

1

I

1

1

I

1

HPCMO
C HENRY
PRGM DIR
1010 N GLEBE RD STE 510
ARLINGTON VA 22201

HPCMO
L DAVIS
DPTY PRGM DIR
1010 N GLEBE RD STE 510
ARLINGTON VA 22201

HPCMO
V THOMAS
DISTRIB CTRS PRJT OFCR
1010 N GLEBE RD STE 510
ARLINGTON VA 22201

HPCMO
J BAIRD
HPC CTRS PRJT MGR
1010 N GLEBE RD STE 510
ARLINGTON VA 22201

HPCMO
L PERKINS
CHSSI PRJT MGR
1010 N GLEBE RD STE 510
ARLINGTON VA 22201

RICE UNIVERSITY
M BEHR
MECHL ENGNRG MTRLS SC1
6100 MAIN ST MS 321
HOUSTON TX 77005

RICE UNIVERSITY
T TEZDUYAR
MECL ENGRG MTRLS SC1
6100 MAIN ST MS 321
HOUSTON TX 77005

J OSBURN
CODE 5594
4555 OVERLOOK RD
BLDG A49 RM 15
WASHINGTON DC 20375-5340

NO. OF
COPIES

1

ORGANIZATION

NAVAL RSRCH LAB
J BORIS
CODE 6400
4555 OVERLOOK AVE SW
WASHINGTON DC 20375-5344

NAVAL RSRCH LAB
D PAPACONSTANTOPOULOS
CODE 6390
WASHINGTON DC 20375-5000

NAVAL RSRCH LAB
G HEBURN
RSRCH OCNGRPHR CNMOC
BLDG 1020 RM 178
STENNIS SPACE CTR MS 39529

AIR FORCE RSRCH LAB DEHE
R PETERKIN
3550 ABERDEEN AVE SE
KIRTLAND AFB NM 87117-5776

AIR FORCE RSRCH LAB
INFO DIRCTRT
R W LINDERMAN
26 ELECTRONIC PKWY
ROME NY 13441-4514

R A WASILAUSKY
SPAWARSYSCEN D4402
BLDG 33 RM 0071A
53560 HULL ST
SAN DIEGO CA 92152-5001

USAE WTRWYS EXI’RMNT STA
CEWES I-IV C
J P HOLLAND
3909 HALLS FERRY RD
VICKSBURG MS 39180-6199

USA CECOM RDEC
AMSEL RD C2
B S PERLMAN
F-I- MONMOUTH NJ 07703

SPACE AND NVL WRFR SYS CTR
K BROMLEY
CODE D7305 BLDG 606 RM 325
53140 SYSTEMS ST
SAN DIEGO CA 92152-5001

46

NO. OF
ORGANIZATION COPIES

3 USA HPCRC
B BRYAN
P MUZIO
V KUMAR
1200 WASHINGTON AVE
S MINNEAPOLIS MN 55415

1 USA HPCRC
G V CANDLER
1200 WASHINGTON AVE
S MINNEAPOLIS MN 55415

1 NCCOSC
L PARNELL
NCCOSC RDTE DIV D3603
49590 LASSING RD
SAN DIEGO CA 92152-6148

1 UNIVERSITY OF TENNESSEE
S MOORE
INNOVATIVE COMPUTER LAB
1122 VOLUNTEER BLVD STE 203
KNOXVILLE TN 379963450

1 SDSC UNIV OF CA SAN DIEGO
A SNAVELY
9500 GILMAN DR
LA JOLLA CA 92093-0505

1 NCSA
152 CAB
S SAARINEN
605 E SPRINGFIELD AVE
CHAMPAIGN IL 61820

1 USA ERDC
DDUFFY
CMPTTNL MGRTN GRP
MAJOR SHARED RESRC CTR
VICKSBURG MS 39180

1 USA ERDC
J HENSLEY
CMPTTNL MGRTN GRP
MAJOR SHARED RESRC CTR
VICKSBURG MS 39180

NO. OF
ORGANIZATION COPIES

1 USA ERDC
T OPI’E
CMMTNL MGRTN GRP
MAJOR SHARED RESRC CTR
VICKSBURG MS 39180

1 USA ERDC
W WARD
CMMTNL MGRTN GRP
MAJOR SHARED RESRC CTR
VICKSBURG MS 39180

1 USA ERDC
R ALTER
CMMTNL MGRTN GRF
MAJOR SHARED RESRC CTR
VICKSBURG MS 39180

ABERDEEN PROVING GROUND

20 DIR USARL
AMSRL CI

N RADHAKRISHNAN
AMSRL CI H

C NIETUBICZ
STHOMPSON

AMSRL CI HC
P CHUNG
JCL-
D GROVE
D HISLEY
M HURLEY
A MARK
D PRESSEL
R NAMBURU
D SHIRES
R VALISETTY
C ZOLTANI

AMSRL CI HI
A PRESSLEY

AMSRL CI HS
D BROWN
T KENDALL
P MATTHEWS
K SMITH
R PRABHAKARAN

1 USA ERDC
M FAHEY
CMMTNL MGRTN GRP
MAJOR SHARED RESRC CTR
VICKSBURG MS 39180

47

INT~~~oNALLY LEF-~ BLANK.

48

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-016

Public reporting burden for this collection of information is estimated to avenge 1 hour ger msponse, fncludlng the time for reviewing inst~ctfons. searching exfstlng data sourca
gathering and maintaining the data needed, and compfetlng and mvlswlng the collection of InformatIon. Send comments mgardfng this burden IstfMte or any other aspect of thb
colktion of InformatIon, including suggenfons for mducfng this burden, to Washington Headquarters Services. Dfmctonte for Information Operadons and Reports. 1215 .feffwso
Davis Hkdwav. Sufte 1204. Artfnaton. “A 22202402. and to the Ofice of Mana,,er”ent and Budget. Pa~emork Reduction Proiedf07M-01081. Washbwton. DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

February 2002 Final, 1 October 2000 - 15 August 2001
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

ENVELOPE: A New Approach to Estimating the Delivered Performance of High 665803.731
Performance Processors

6. AUTHOR(S)

Daniel M. Pressel

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS 8. PERFORMING ORGAN12
U.S. Army Research Laboratory REPORT NUMBER

ATTN: AMSRL-CI-HC ARL-TR-267 1
Aberdeen Proving Ground, MD 2 1005-5067

8. SPONSORlNGlMONlTORlNG AGENCY NAMES(S) AND ADDRESS 10.SPONSORING/MONITOl
AGENCY REPORT NUM:

11. SUPPLEMENTARY NOTES

i2a. DlSTRlBUTlON/AVAlLABlLlTY STATEMENT 12b. DISTRIBUTION CODE
Approved for public release; distribution is unlimited.

13. ABSTRACT(Maximum 200 words)

Simulating a computer run can be an excellent method for identifying performance bottlenecks and
valuable when discussing systems that do not yet exist. Traditional simulations collect a program trace ant
simulator execute some subset of the trace one instruction at a time. Unfortunately, all of the standard va
technique are far too slow to use on jobs for high-end High Performance Computers and Supercompute
developed an approach based primarily on an analysis of the memory access patterns and the number off
operations being executed that will estimate the performance of any run in a small fixed amount of time
seconds or less). Experience has shown that the results are nearly always within a factor of 2 of the measure
frequently are within 15% or better of the measured results.

14. SUBJECT TERMS 15. NUMBER OF I

high performance computing, supercomputer, performance modeling 54
16. PRICE CODE

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION C
OF REPORT OF THIS PAGE OF ABSTRACT

UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED Ul
NSN 7540-01-280-5500

49
Standard Form 298 (Rev. 2.
Prescribed by ANSI Std. 23!

INTENTIONALLYLEFTBLANK.

50

